Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Vet Sci ; 10: 1146648, 2023.
Article in English | MEDLINE | ID: covidwho-2320311

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that threatens animal health and remains elusive despite years of research efforts. The systematical analysis of all available full-length genomes of TGEVs (a total of 43) and porcine respiratory coronaviruses PRCVs (a total of 7) showed that TGEVs fell into two independent evolutionary phylogenetic clades, GI and GII. Viruses circulating in China (until 2021) clustered with the traditional or attenuated vaccine strains within the same evolutionary clades (GI). In contrast, viruses latterly isolated in the USA fell into GII clade. The viruses circulating in China have a lower similarity with that isolated latterly in the USA all through the viral genome. In addition, at least four potential genomic recombination events were identified, three of which occurred in GI clade and one in GII clade. TGEVs circulating in China are distinct from the viruses latterly isolated in the USA at either genomic nucleotide or antigenic levels. Genomic recombination serves as a factor driving the expansion of TGEV genomic diversity.

2.
Viruses ; 15(2)2023 01 20.
Article in English | MEDLINE | ID: covidwho-2200904

ABSTRACT

Porcine coronaviruses and reproductive and respiratory syndrome (PRRS) are responsible for severe outbreaks that cause huge economic losses worldwide. In Italy, three coronaviruses have been reported historically: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Although repeated outbreaks have been described, especially in northern Italy, where intensive pig farming is common, there is a worrying lack of information on the spread of these pathogens in Europe. In this work, we determined the seroprevalence of three porcine coronaviruses and PRRSV in the Campania region, southern Italy. A total of 443 samples were tested for the presence of antibodies against porcine coronaviruses and PRRSV using four different commercial ELISAs. Our results indicated that PEDV is the most prevalent among porcine coronaviruses, followed by TGEV, and finally PRCV. PRRSV appeared to be the most prevalent virus (16.7%). For coronaviruses, seroprevalence was higher in pigs raised in intensive farming systems. In terms of distribution, TGEV is more widespread in the province of Avellino, while PEDV and PRRSV are more prevalent in the province of Naples, emphasizing the epidemic nature of both infections. Interestingly, TGEV-positive animals are more common among growers, while seropositivity for PEDV and PRRSV was higher in adults. Our research provides new insights into the spread of swine coronaviruses and PRRSV in southern Italy, as well as a warning about the need for viral surveillance.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine Reproductive and Respiratory Syndrome , Porcine Respiratory Coronavirus , Porcine epidemic diarrhea virus , Porcine respiratory and reproductive syndrome virus , Transmissible gastroenteritis virus , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/epidemiology , Seroepidemiologic Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Italy/epidemiology
3.
Ecohealth ; 19(2): 159-163, 2022 06.
Article in English | MEDLINE | ID: covidwho-1872562

ABSTRACT

Swine coronaviruses affecting pigs have been studied sporadically in wildlife. In Argentina, epidemiological surveillance of TGEV/PRCV is conducted only in domestic pigs. The aim was to assess the prevalence of TGEV/PRCV in wild Suina. Antibodies against these diseases in wild boar and captive collared peccary were surveyed by ELISA. Antibodies against TGEV were found in three collared peccaries (n = 87). No TGEV/PRCV antibodies were detected in wild boar (n = 160). Preventive measures should be conducted in contact nodes where the transmission of agents may increase. Epidemiological surveillance in wildlife populations and in captive animals before their reintroduction should be attempted.


Subject(s)
Artiodactyla , Coronavirus Infections , Coronavirus , Gastroenteritis, Transmissible, of Swine , Swine Diseases , Transmissible gastroenteritis virus , Animals , Animals, Wild , Argentina/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Swine
4.
Virulence ; 12(1): 1111-1121, 2021 12.
Article in English | MEDLINE | ID: covidwho-1243446

ABSTRACT

Coronaviruses and influenza viruses are circulating in humans and animals all over the world. Co-infection with these two viruses may aggravate clinical signs. However, the molecular mechanisms of co-infections by these two viruses are incompletely understood. In this study, we applied air-liquid interface (ALI) cultures of well-differentiated porcine tracheal epithelial cells (PTECs) to analyze the co-infection by a swine influenza virus (SIV, H3N2 subtype) and porcine respiratory coronavirus (PRCoV) at different time intervals. Our results revealed that in short-term intervals, prior infection by influenza virus caused complete inhibition of coronavirus infection, while in long-term intervals, some coronavirus replication was detectable. The influenza virus infection resulted in (i) an upregulation of porcine aminopeptidase N, the cellular receptor for PRCoV and (ii) in the induction of an innate immune response which was responsible for the inhibition of PRCoV replication. By contrast, prior infection by coronavirus only caused a slight inhibition of influenza virus replication. Taken together, the timing and the order of virus infection are important determinants in co-infections. This study is the first to show the impact of SIV and PRCoV co- and super-infection on the cellular level. Our results have implications also for human viruses, including potential co-infections by SARS-CoV-2 and seasonal influenza viruses.


Subject(s)
Epithelial Cells/virology , Influenza A Virus, H3N2 Subtype/physiology , Porcine Respiratory Coronavirus/physiology , Viral Interference , Animals , CD13 Antigens/metabolism , Cells, Cultured , Coinfection/virology , Coronavirus Infections/virology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Immunity, Innate , Orthomyxoviridae Infections/virology , Swine , Trachea/cytology , Virus Replication
5.
Comput Struct Biotechnol J ; 19: 1072-1080, 2021.
Article in English | MEDLINE | ID: covidwho-1056514

ABSTRACT

The coronavirus (CoV) infects a broad range of hosts including humans as well as a variety of animals. It has gained overwhelming concerns since the emergence of deadly human coronaviruses (HCoVs), severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, followed by Middle East respiratory syndrome coronavirus (MERS-CoV) in 2015. Very recently, special attention has been paid to the novel coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 due to its high mobility and mortality. As the COVID-19 pandemic continues, despite vast research efforts, the effective pharmaceutical interventions are still not available for clinical uses. Both expanded knowledge on structure insights and the essential function of viral nucleocapsid (N) protein are key basis for the development of novel, and potentially, a broad-spectrum inhibitor against coronavirus diseases. This review aimed to delineate the current research from the perspective of biochemical and structural study in cell-based assays as well as virtual screen approaches to identify N protein antagonists targeting not only HCoVs but also animal CoVs.

6.
J Clin Microbiol ; 58(8)2020 Jul 23.
Article in English | MEDLINE | ID: covidwho-1006147

ABSTRACT

Discovery of bats with severe acute respiratory syndrome (SARS)-related coronaviruses (CoVs) raised the specter of potential future outbreaks of zoonotic SARS-CoV-like disease in humans, which largely went unheeded. Nevertheless, the novel SARS-CoV-2 of bat ancestral origin emerged to infect humans in Wuhan, China, in late 2019 and then became a global pandemic. Less than 5 months after its emergence, millions of people worldwide have been infected asymptomatically or symptomatically and at least 360,000 have died. Coronavirus disease 2019 (COVID-19) in severely affected patients includes atypical pneumonia characterized by a dry cough, persistent fever, and progressive dyspnea and hypoxia, sometimes accompanied by diarrhea and often followed by multiple organ failure, especially of the respiratory and cardiovascular systems. In this minireview, we focus on two endemic respiratory CoV infections of livestock: bovine coronavirus (BCoV) and porcine respiratory coronavirus (PRCV). Both animal respiratory CoVs share some common features with SARS-CoV and SARS-CoV-2. BCoV has a broad host range including wild ruminants and a zoonotic potential. BCoV also has a dual tropism for the respiratory and gastrointestinal tracts. These aspects, their interspecies transmission, and certain factors that impact disease severity in cattle parallel related facets of SARS-CoV or SARS-CoV-2 in humans. PRCV has a tissue tropism for the upper and lower respiratory tracts and a cellular tropism for type 1 and 2 pneumocytes in lung but is generally a mild infection unless complicated by other exacerbating factors, such as bacterial or viral coinfections and immunosuppression (corticosteroids).


Subject(s)
Betacoronavirus/growth & development , Cattle Diseases/physiopathology , Coronavirus Infections/veterinary , Coronavirus, Bovine/growth & development , Pneumonia, Viral/physiopathology , Respiratory Tract Infections/veterinary , Swine Diseases/physiopathology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Cattle , Cattle Diseases/pathology , Cattle Diseases/virology , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Coronavirus, Bovine/pathogenicity , Host Specificity , Humans , Pandemics , Pneumonia, Viral/pathology , Porcine Respiratory Coronavirus/growth & development , Porcine Respiratory Coronavirus/pathogenicity , Respiratory Tract Infections/pathology , Respiratory Tract Infections/physiopathology , SARS-CoV-2 , Swine , Swine Diseases/pathology , Swine Diseases/virology , Viral Tropism
7.
Viruses ; 12(11)2020 10 23.
Article in English | MEDLINE | ID: covidwho-895404

ABSTRACT

Porcine respiratory coronavirus (PRCoV) infects the epithelial cells in the respiratory tract of pigs, causing a mild respiratory disease. We applied air-liquid interface (ALI) cultures of well-differentiated porcine airway cells to mimic the respiratory tract epithelium in vitro and use it for analyzing the infection by PRCoV. As reported for most coronaviruses, virus entry and virus release occurred mainly via the apical membrane domain. A novel finding was that PRCoV preferentially targets non-ciliated and among them the non-mucus-producing cells. Aminopeptidase N (APN), the cellular receptor for PRCoV was also more abundantly expressed on this type of cell suggesting that APN is a determinant of the cell tropism. Interestingly, differentiation-dependent differences were found both in the expression of pAPN and the susceptibility to PRCoV infection. Cells in an early differentiation stage express higher levels of pAPN and are more susceptible to infection by PRCoV than are well-differentiated cells. A difference in the susceptibility to infection was also detected when tracheal and bronchial cells were compared. The increased susceptibility to infection of bronchial epithelial cells was, however, not due to an increased abundance of APN on the cell surface. Our data reveal a complex pattern of infection in porcine differentiated airway epithelial cells that could not be elucidated with immortalized cell lines. The results are expected to have relevance also for the analysis of other respiratory viruses.


Subject(s)
CD13 Antigens/metabolism , Epithelial Cells/metabolism , Porcine Respiratory Coronavirus/physiology , Receptors, Virus/metabolism , Respiratory Mucosa/virology , Viral Tropism , Animals , Bronchi/metabolism , Bronchi/virology , Cell Differentiation , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/virology , Swine , Trachea/metabolism , Trachea/virology , Virus Internalization , Virus Release , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL